

Magnetism Diffractometer at ESS

Arsen Goukassov,
Laboratoire Léon Brillouin
CEA-CNRS, Saclay, France

Peter Willendrup

DTU Physics, Lyngby, Denmark

- Typical SC magn. experiments
- Collection of many Bragg reflections for structure solution or refinement
- Volumetric mapping of reciprocal space: diffuse scattering and super structure, 1D and 2D cuts
- Study of individual reflection in phase transitions

SPIN DENSITY IN THE PARTIALLY MAGNETIZED ORGANIC QUANTUM MAGNET F2PNNNO

A. Zheludev, V. Garlea, S. Nishihara, Y. Hosokoshi, A. Cousson and A. Gukasov. Phys Rev B75,104427, 2007
-6T2 HII[001],[110] 1 day

(a)

(b)

Field induced Double Layered Monopole Structure in TbTi2O7

FIG. 5. (Color online) Left panel: Double-layered monopolar structure of $\mathrm{Tb}_{2} \mathrm{Ti}_{2} \mathrm{O}_{7}$ with vacuum pair excitations. Right panel: Magnetically vacuum state of $\mathrm{Ho}_{2} \mathrm{Ti}_{2} \mathrm{O}_{7}$ with monopole pair excitation.

Diffuse scattering in $\mathrm{Tb}_{2} \mathrm{Ti}_{2} \mathrm{O}_{7}$ at $160 \mathrm{mK}, \mathrm{H}=0 \mathrm{~T}$

Cap2010 Very Intense Polarized Neutron DIFFRACTOMETER (5C1) at LLB

$25^{\circ} \times 80^{\circ}$

64 PS He3 detectors spaced at 1.2

VIP Neutron DIFFRACTOMETER (5C1) LLB

Tb2Ti207 2 K, 1T
$A=10.12 \AA \mathrm{Fd} 3 \mathrm{~m}$ $V \sim 60 \mathrm{~mm} 3$

3500 steps of 0.1 Exposition $4 \mathrm{sec} /$ frame

VIP Neutron DIFFRACTOMETER (5C1)

LLB

Tb2Ti207 2 K, 1T
$A=10.12 \AA \mathrm{Fd} 3 \mathrm{~m}$ $V \sim 60 \mathrm{~mm} 3$

3500 steps of 0.1 Exposition $4 \mathrm{sec} /$ frame

951 reflections observed

726 FR> 3б i.e. magnetic

White Beam (Laue) Neutron Diffraction from a single crystal

Multiple reflections sorted by the Crystal itself

SCD on ESS

- $t=L / 4000 * \lambda$
- For $L=40 \mathrm{~m}, \lambda=1 \AA \mathrm{t}=10 \mathrm{~ms}$ ($\lambda=7 \AA \mathrm{t}=70 \mathrm{~ms}$)
- Pulse width $\Delta \mathrm{t}^{\sim} 2 \mathrm{~ms}$ Period $\mathrm{T}^{\sim} 70 \mathrm{~ms}$
- $\Delta t / \mathrm{t}$ ~ 20-3 \%

SCD on ESS , Ven workshop 2008

XESS - Extreme environment single crystal diffractometer for
the ESS-LP (ESS workshop October, 2008, Ven, Sueden)
A. Gukasov, P Willendrup, E. Knudsen and F. K. Larsen

Abstract

A single crystal diffractometer for extreme environments was designed during the ESS Ven workshop. We show using Monte-Carlo simulations that the exceptional qualities of the long-pulse spallation source translate into strongly enhanced performance of single crystal diffractometer. This is due to the fact that the ESS duty cycle matches perfectly well the wavelength resolution required for single crystal diffraction. We show as well that very significant additional gain of the instrument luminosity can be achieved by exploiting modern focusing neutron optics.

Background

The XESS diffractometer described below can be considered as a general purpose crystal and magnetic structure instrument optimized for crystals with unit cell from $15 \times 15 \times 15 \AA$ to $25 \times 25 \times 25 \AA$. It uses the time-of-flight (TOF) Laue

Moderator and guide section

The proposed solution is a Laue TOF instrument with normal beam geometry, utilizing the wavelength band $0.8<\lambda<8 \AA$ and a total instrument length of 30 m . The preliminary studies were done assuming a thermal moderator, but results can be generalized to a mixed moderator setup.

McStas simulations of XESS

of diffraction patterns usually allows eliminating the correlations in the structural parameters during due to overlapping reflections. Second consists in

Figure 5: In-plane scattering angle and time-of-flight diagram for full 2 ms pulse. Color scale is logarithmic, in a.u.
improving the spatial resolution.

Moderator and guide section

The proposed solution is a Laue TOF instrument with normal beam geometry, utilizing the wavelength band $0.8<\lambda<8 \AA$ and a total instrument length of 30 m . The preliminary studies were done assuming a thermal moderator, but results

McStas simulations of XESS

- Pulse tailoring by chopper (intensity losses)

Figure 6: In plane scattering angle and time-of-flight diagram for a 0.25 ms pulse. Color scale is logarithmic, in a.u.

- Correlation methods, Fourier, PR choppers to be reconsidered

Design elements

- ESS Long pulse favorable for SC (XESS) - Short wavelength (0.8 A) are desirable - Area Detectors, arranged cylindrically for good sample env access

- Polarized neutrons optic

- Ni mirror 0.002rad $/ \AA$ ($\sim 7^{\prime}$ for $1 \AA$)
- SM m=2.5 0.005rad/ (20^{\prime} for $1 \AA$)
- Guide width $a=L / 4^{*} 0.005=50 \mathrm{~mm}$
- Advantages :

White spctrum, Transmission $\sim 100 \%$, Polarization 95-99\%, known technology

1 - Single curved Polarizing neutron guide (reference option)

beam size $20 \times 20 \mathrm{~mm} 2$. minimum length $L=33 \mathrm{~m}$ for $\Lambda^{*}=0.4 \AA$ SM FeCo/TiN m=2.5
 0.8-4.5 \AA.

Fig. 3 The transmittance T of a perfect neutron guide for an incident neutron beam with the divergence $D=2 \theta^{*} \lambda / \lambda^{*}$ as a function of λ / λ^{*}
ESS simulation meeting on diffraction, Oct 24th 2012

2- Ballistic (elliptic, parabolic) Polarizing neutron guide

Cross-section $50 \times 50 \mathrm{~mm} 2$. minimum length $L=80 \mathrm{~m}$ for $\Lambda^{*}=0.4 \AA$ FeCo $m=1$ 0.8-4.5 \AA.

3- Ballistic (elliptic, parabolic)

Unpolarized neutron guide + cavity?

Add-on options?

Asymmetric SC Magnet Guide fields Microfocusing optics

Post Doc to be hired @ LLB

Post Doc position open at LLB from January 2013 devoted to the Project Magnetism Diffractometer at ESS

