

McStas

N

Magnetism Diffractometer at ESS

Arsen Goukassov, Laboratoire Léon Brillouin

CEA-CNRS, Saclay, France <u>Peter Willendrup</u> DTU Physics, Lyngby, Denmark

ESS simulation meeting on diffraction, Oct 24th 2012

ESS simulation meeting on diffraction, Oct 24th 2012

•Typical SC magn. experiments

- Collection of many Bragg reflections for structure solution or refinement
- Volumetric mapping of reciprocal space; diffuse scattering and super structure, 1D and 2D cuts
- Study of individual reflection in phase transitions

SPIN DENSITY IN THE PARTIALLY MAGNETIZED ORGANIC QUANTUM MAGNET F₂PNNNO

A. Zheludev, V. Garlea, S. Nishihara, Y. Hosokoshi, A. Cousson and A. Gukasov. Phys Rev B75,104427, 2007

• 6T2 HII[001] , [110] 1 day

ESS simulation meeting on diffraction, Oct 24th 2012

Field induced Double Layered Monopole Structure in TbTi2O7

SAZONOV, GUKASOV, MIREBEAU, AND BONVILLE

PHYSICAL REVIEW B 85, 214420 (2012)

ESS simulation meeting on diffraction, Oct 24th 2012

Diffuse scattering in Tb₂Ti₂O₇ at 160mK, H=0T

ESS simulation meeting on diffraction, Oct 24th 2012

Cap2010 Very Intense Polarized Neutron DIFFRACTOMETER (5C1) at LLB

25°x80°

ESS simulation meeting on diffraction, Oct 24th 2012

Cap2010 VIP Neutron DIFFRACTOMETER (5C1)

delivered in 2010

64 PS He3 detectors spaced at 1.2

ESS simulation meeting on diffraction, Oct 24th 2012

VIP Neutron DIFFRACTOMETER (5C1) LLB

3500 steps of 0.1 Exposition 4 sec/frame

Tb2Ti2O7 2 K, 1T A=10.12 Å Fd3m V~60mm3

ESS simulation meeting on diffraction, Oct 24th 2012

VIP Neutron DIFFRACTOMETER (5C1) LLB

3500 steps of 0.1 Exposition 4 sec/frame

951 reflections observed726 FR> 3σ i.e. magnetic

Tb2Ti2O7 2 K, 1T A=10.12 Å Fd3m V~60mm3

ESS simulation meeting on diffraction, Oct 24th 2012

White Beam (Laue) Neutron Diffraction from a single crystal

Multiple reflections sorted by the Crystal itself

SCD on ESS

- t=L/4000*λ
- For L=40 m, λ =1Å t=10ms (λ =7Å t=70ms)
- Pulse width Δt~2ms Period T~70ms
 Δt/t ~ 20-3 %

SCD on ESS , Ven workshop 2008

XESS – Extreme environment single crystal diffractometer for the ESS-LP (ESS workshop October, 2008, Ven, Sueden) A. Gukasov, P Willendrup, E. Knudsen and F. K. Larsen

Abstract

A single crystal diffractometer for extreme environments was designed during the ESS Ven workshop. We show using Monte-Carlo simulations that the exceptional qualities of the long-pulse spallation source translate into strongly enhanced performance of single crystal diffractometer. This is due to the fact that the ESS duty cycle matches perfectly well the wavelength resolution required for single crystal diffraction. We show as well that very significant additional gain of the instrument luminosity can be achieved by exploiting modern focusing neutron optics.

Background

The XESS diffractometer described below can be considered as a general purpose crystal and magnetic structure instrument optimized for crystals with unit cell from 15x15x15 Å to 25x25x25 Å. It uses the time-of-flight (TOF) Laue

Moderator and guide section

The proposed solution is a Laue TOF instrument with normal beam geometry, utilizing the wavelength band $0.8 < \lambda < 8$ Å and a total instrument length of 30 m. The preliminary studies were done assuming a thermal moderator, but results can be generalized to a mixed moderator setup.

ESS simulation meeting on diffraction, Oct 24th 2012

McStas simulations of XESS

of diffraction patterns usually allows eliminating the correlations in the structural parameters during due to overlapping reflections. Second consists in

improving the spatial resolution.

Moderator and guide section

The proposed solution is a Laue TOF instrument with normal beam geometry, utilizing the wavelength band $0.8 < \lambda < 8$ Å and a total instrument length of 30 m. The preliminary studies were done assuming a thermal moderator, but results the generation becoming a thermal moderator.

ESS simulation meeting on diffraction, Oce 24th 20#2mixed moderator setup.

McStas simulations of XESS

Pulse tailoring by chopper (intensity losses)

Figure 6: In plane scattering angle and time-of-flight diagram for a 0.25 ms pulse. Color scale is logarithmic, in a.u.

Correlation methods, Fourier, PR choppers to be reconsidered

Design elements

• ESS Long pulse favorable for SC (XESS)

- Short wavelength (0.8 A) are desirable
- Area Detectors, arranged cylindrically for good sample env access

Polarized neutrons optic

- Ni mirror 0.002rad/Å (~7' for 1Å)
 SM m=2.5 0.005rad/Å (20' for 1 Å)
- Guide width a= L/4* 0.005= 50mm
- Advantages :
- White spctrum, Transmission ~100%, Polarization 95-99%, known technology

1- Single curved Polarizing neutron guide (reference option)

beam size 20x20 mm2. minimum length L=33m for 1*=0.4 Å SM FeCo/TiN m=2.5 0.8-4.5 Å.

Fig. 3 The transmittance T of a perfect neutron guide for an incident neutron beam with the divergence $D=2\theta^* \lambda / \lambda^*$ as a function of λ / λ^*

ESS simulation meeting on diffraction, Oct 24th 2012

Wednesday, October 24, 12

A.F. Schebetov et al. / Phys.

Fig. 2. (a): The polarizing efficiency of the old (open symbols) and the new (solid symbols) polarizers. (b) The transmittance of the old (open symbols) and the new (solid symbols) polarizers and according to theory [4] (line) as a function of the reduced wavelength λ/λ_c . The transmittances are divided by the respective geometrical factors w/(w+g), where w and g are the thickness of channel gaps and glass substrates, respectively.

2- Ballistic (elliptic, parabolic) Polarizing neutron guide

Cross-section 50x50 mm2.minimum length L=80 m for λ *=0.4 Å FeCo m=1 0.8-4.5 Å.

3- Ballistic (elliptic, parabolic) Unpolarized neutron guide + cavity?

ESS simulation meeting on diffraction, Oct 24th 2012

Add-on options?

Asymmetric SC Magnet Guide fields Microfocusing optics

Post Doc to be hired @ LLB

Post Doc position open at LLB from January 2013 devoted to the Project Magnetism Diffractometer at ESS