

EUROPEAN SPALLATION SOURCE

A monochromatic powder diffraction instrument for the ESS(SD037)

Paul Henry Instrument Scientist - diffraction

LPSS and t-o-f diffraction

- Diffraction requires low $\Delta \lambda / \lambda$ uncertainty
- Instrument length (moderator detector) is given by:

 $L = \tau / ((\Delta \lambda / \lambda) \alpha \lambda_{mean})$

- For ESS where τ = 2.86 ms, α = 0.2528 ms Å⁻¹ m⁻¹ and a thermal neutron (λ_{mean} is 1.5 Å)
- 0.1 % resolution requires a 7.5 km instrument
- 0.5 % is 1.5 km
- Even a 'cold' neutron instrument with $\,\lambda_{\,\text{mean}}$ of 4 Å and 1 % resolution is 283 m.
- We cannot use the full pulse for any type of diffraction
- A pulse-shaping chopper is needed
- Pulse-shaping brings other limitations

Pulse-shaping chopper

How much of the long-pulse can be used?

EUROPEAN

SPALLATION SOURCE

For a 150+6 m instrument: $\Delta\lambda/\lambda$ 0.1 % useful τ is 57 µs (2 % of full pulse), wavelength band 1.81 Å $\Delta\lambda/\lambda$ 0.5 % useful τ is 285 µs (10 % of full pulse), wavelength band 1.80 Å

Powder possibilities

- Wavelength frame multiplication (WFM)
 - Increases available bandwidth
 - Shorter instrument
 - Flexible resolution
 - Flexible choice of bandwidth
 - Uses less of long pulse at constant $\Delta\lambda$ / λ cf. natural length instrument
 - No flux gain cf. SPSS instruments, except at larger Δ λ / λ
 - Mechanical choppers limit Q_{max} (λ_{min})

Monochromatic

- Uses full pulse
- Short(er) instrument
- Flexible resolution/flux trade
- Limited choice of incident wavelengths
- Limited Q_{max}
- No source gains
- No gain factor cf. D20

ILL v ESS time average

EUROPEAN SPALLATION

SOURCE

ILL v ESS single pulse

EUROPEAN SPALLATION

SOURCE

Concept: Pulsed D20

- Primary guide
 - Feeder
 - Half-elliptical guide?
 - Straight v non line of sight guide
 - Possibility of farm (as with H11 at ILL)
- Investigate monochromators
 - Germanium
 - Diamond
 - Composite
 - Others?
- Larger area detector
 - t-o-f resolution
 - Event recording
- Sample environment
 - Optimise for instrument geometry
- New capabilities cf. reactor instrument
 - Multi-wavelength data collection
 - Separate coherent/incoherent scattering
 - Elastic/inelastic/QENS measurements
 - Fast kinetic measurements

Science Drivers

- As current generation of instruments
- Chemical crystallography
 - − Q_{max} ~ 12.5 Å⁻¹
 - Variable resolution
 - Trade flux for resolution
- Parametric studies
 - In-situ chemical processing
 - Fast kinetics
 - Phase diagram mapping
 - Complex/multi-role sample environments
- New Science?
 - Incoherent scattering separation/suppression
 - Elastic/QENS/inelastic options

Monochromators

- Separate λ /2 and/or λ /3 as well as reflection coexistence in t-o-f- at detector
- Immediate gain in Q-range coverage

EUROPEAN

SPALLATION SOURCE

• Immediate gain in effective count rate

Detector

- Issue is limited/no? access to ³He
- Investigate other technologies
 - Solid state boron thin films
 - Scintillation with wavelength shifting fibres
 - ZnS scintillators with PMTs?
- Event mode data collection offers advantages
 - Separate multi-wavelength data
 - Energy resolution
- Usability
 - Data visualisation/reduction familiar to users
 - Data format easily handled by existing software

New Capabilities

- Multi-wavelength data collection
 - Depends on instrument total length (e.g. 1 Å on 35 m instrument takes 9 ms, 1.8 Å takes 16 ms)
 - Developments in available monochromator types
 - Develop 'dirty' monochromators
 - Investigate sandwich monochromators
- Separate coherent/incoherent scattering
 - Depends on sample-detector distance
 - Sample temperature
 - Incident wavelength
 - Beam tailoring?
- Elastic/inelastic/QENS measurements
 - Depends on sample-detector distance
 - A PSC to tailor incoming pulse on monochromator
- Fast kinetic sampling measurements?
 - Sampling time around 4ms
 - Repetition rate 14 Hz

Incoherent scattering

Figure from C. Carlile (ESS), M. Karlsson (Chalmers)

EUROPEAN SPALLATION SOURCE

Inelastic scattering mapping

Challenge for ¹H measurement

- Direct measurement of S(Q,E) by Femichopper
 - Monochromatic neutron with $\Delta E/Ei \simeq 10\%$
 - Determination of effective mass
 - (Determination of excitation level)
 - Full use of event-mode: multi-Ei measurement
 - Nakamura et a. J. Phys. Soc. Jpn., 78, 093002 (2009)

Fig. 1. $S(Q, \omega)$ map for a coal sample (sub-bituminous A) at 2 K containing ~ 5 wt% of H. Obtained with the MARI spectrometer (ISIS). Recoil lines for H, C and Al atoms are superimposed.

Fast kinetics

ms sampling?

D.P. Riley, E.H. Kisi, T.C. Hansen, A. Hewat, *J. Am. Ceramic Soc.* **85** (2002) 2417-2424.

Data collection ~120 ms at 5-6 Hz Histogram binned Allows kinetic information to be extracted

What would be possible with 4ms data collection at 14 Hz coupled with event mode detection?

Summary

- Investigate an instrument based on monochromators
 - Simulate and optimise beam transport
 - Quantify feasibility of added value techniques
 - Compare with existing instruments
 - One instrument or several on guide
 - Detector development
 - Monochromator development
 - Begin development of sample environment
- Timeline
 - Post doc position
 - 2-year position
 - 50% science / 50% instrumentation
 - Instrument concept initial submission in 2013 (round 2)